

3.4 TESTING CODE EXAMPLES

45

letter of the mnemonic often tells you what type the mnemonic operates on. For
example,

iconst_1

 loads an

int

 1 onto the stack, while

lconst_1

 loads a

long

 1
onto the stack. The letter

i

 indicates an

int

, and the letter

l

 indicates a

long

.
Table 3.1 summarizes the mnemonic naming conventions.

Do not be misled by the naming convention into believing in mnemonics that
do not exist. Each mnemonic corresponds to a number between 0 and 255 in the

class

 file. This number is called an

opcode

. Just because there’s an opcode for
the mnemonic

iand

 to compute the bitwise

and

 of two

int

s, it doesn’t mean that
there’s an opcode for the mnemonic

dand

 to compute the bitwise

and

 of two

double

s.
The complete list of mnemonics can be found in appendix A.

3.4 Testing Code Examples

Code examples appear throughout this chapter. Unfortunately, we haven’t really
discussed how to do output, so it will be a little tricky to actually try out any of
these code examples. Output involves some mucking about with method calls and
sometimes with creating new objects and other such complicated things that are
better left for a later chapter.

The good news is that you can use Java to assemble a test harness for these
code samples. You can wrap the test code up in a small, easy-to-write class, then
use Java to perform the input and output. For example, here is some code to
answer the question, “What do you get if you multiply 6 by 9?”

bipush 6 ; Push 6

bipush 9 ; Push 9

imul ; Result is 54

TABLE 3.1: Mnemonic type
letters

Letter Type

a reference

b byte or boolean
c char

d double

f float

i int

l long

s short

26 | ENGEL.backup.ch03 Page 45 Friday, May 19, 2000 10:55 AM

Tyrrell Albaugh

CHAPTER 4 CLASSES AND OBJECTS

82

4.4.2 Inheriting Fields

When one class has another class as a superclass, it inherits all of the nonstatic
fields of that class. Consider an extension to the

Greeting

 class to handle greet-
ings in Russian:

class RussianGreeting extends Greeting

{

String intro = "Zdravstvuite";

}

An instance of

RussianGreeting

 has two fields, both named

intro

. An instance
of

RussianGreeting

 looks like Figure 4.4. The full names of the fields are differ-
ent. In Java, the English-language

intro

 is

hidden

 behind the Russian-language
version. In Oolong, they are both equally accessible:

.method static internationalGreetings(LRussianGreeting;)V

aload_0 ; There is a RussianGreeting in register 0

; Push "Zdravstvuite":

getfield RussianGreeting/intro Ljava/lang/String;

aload_0 ; Reload the same object

; Push "Hello":

getfield Greeting/intro Ljava/lang/String;

;; Rest of the method omitted

.end method

At the end of the code shown, there will be two objects on the stack. The bottom
of the stack will contain a

reference

 to the

String “Zdravstvuite”

, and above
it will be a

reference

 to the

String “Hello”

.

4.4.3 Changing Field Values

To get the value of a field, use

getfield

, which takes an object on the stack and
leaves in its place the value of the field. The counterpart of

getfield

 for changing

RussianGreeting

Greeting/intro

RussianGreeting/intro

Heap

"Hello"

"Zdravstvuite"

FIGURE 4.4: An instance of RussianGreeting

26 | ENGEL.ch04 Page 82 Friday, May 19, 2000 2:27 PM

Tyrrell Albaugh

Tyrrell Albaugh

CHAPTER 4 CLASSES AND OBJECTS

104

.field private elements [Ljava/lang/Object;

.field current I

.method public getNext()Ljava/lang/Object;

;; Return elements[current], and increment current

.end method

.method public anyMore()Ljava/lang/Object;

;; Return false if current < the length of elements

.end method

The implementor of

Business

 can change the implementation of

inventory

without altering any of the classes that use it, since the implementation of

Enu-

merator

 was kept separate from the interface definition.
Invoking methods through interfaces is slightly different from invoking meth-

ods using

invokevirtual

 or

invokespecial

. A third instruction,

invokeinter-

face

, is required. To call

anyMore

, use code like this:

; Assume there’s a Business in local variable 0

aload_0 ; Get the

; Business

invokevirtual Business/inventory ()LEnumerator; ; Get its

; inventory

invokeinterface Enumerator/anyMore ()Z 1 ; Call anyMore

The last argument to the

invokeinterface

 instruction is the number of stack
words used as parameters to the method call, including the receiver itself.

2

 In this
example, the only parameter is the

Enumerator

 object itself, so the value is 1. For
the interface:

.interface Searchable

.method find(Ljava/lang/String;)Ljava/lang/Object;

.end method

A call to

find

 looks like this:

; Assume there’s a Searchable object in register 1

aload_1 ; Get the object

ldc "potato chips" ; We want an element named "potato chips"

invokeinterface Searchable/find

 (Ljava/lang/String;)Ljava/lang/Object; 2

2

This number should not be necessary, since it can be derived from the method descriptor. However,
it is included in the Oolong language because it is part of the underlying JVM bytecodes.

26 | ENGEL.ch04 Page 104 Friday, May 19, 2000 2:29 PM

Tyrrell Albaugh

4.12 ARRAYS

109

dup ; Dup the array reference

ldc "Hello" ; Store hello

iconst_0 ; Into slot 0

aastore

; The array reference is still on the stack

dup

ldc "World" ; Store hello

iconst_1 ; Into slot 1

aastore

To get elements out of the array, you use

aaload

. To get the

reference

 to

"World"

 on the stack, use

iconst_1 ; Push int 1

aaload ; Load array slot 1

Now the memory picture looks like the diagram in Figure 4.10. The top of the
stack has been replaced with a

reference

 to the

World

 string.
You can think of an array as being a little like an object whose fields have

numbers instead of names. Whenever you store into an array, you must meet the

Stack

[Ljava/lang/String;

Heap

"World"

"Hello"

FIGURE 4.9: After setting array slots 0 and 1

26 | ENGEL.ch04 Page 109 Friday, May 19, 2000 2:30 PM

Tyrrell Albaugh

Tyrrell Albaugh

CHAPTER 6 VERIFICATION PROCESS

138

Most sections begin with a count, which is a two-byte unsigned integer, followed
by that many instances of some pattern of bytes. For example, following the major
version number is the count of the number of constants. Each constant begins with a
tag describing what sort of constant it is, which in turn tells how many bytes make up
the constant. The set of constant tags is defined by the virtual machine specification.
If any constant tag is invalid, or if the file ends before the correct number of constants
are found, then the file is rejected. The valid constant tags are given in Table 6.1.

Similar rules apply to the other sections. If the file ends before all of the parts
are found, or if there are extra bytes at the end, then the file is rejected. For more
about the details of the inner workings of the

class

 file, see chapter 9.

6.3 Are All Constant References Correct?

After asking whether or not the file looks like a properly formatted

class

 file, the
verification algorithm knows where the constant pool is to be found and how

TABLE 6.1: Constant tags

Ta
g

Type Format Interpretation

1 UTF8 2+n bytes The first two bytes are an unsigned integer
n; the remaining n bytes are the text of the
constant.

2 not defined

3 Integer 4 bytes Signed integer

4 Float 4 bytes IEEE 754 floating-point number

5 Long 8 bytes Long signed integer

6 Double 8 bytes IEEE 754 double-precision number

7 Class 2 bytes Reference to a UTF8 constant that is the
name of a class

8 String 2 bytes Reference to a UTF8 constant that is the
value of the String

9 Fieldref 4 bytes The first two bytes are a reference to a
Class; the second two point to a
NameAndType.

10 Methodref 4 bytes Same as Fieldref

11 InterfaceMethodref 4 bytes Same as Fieldref

12 NameAndType 4 bytes The first two bytes point to a UTF8 that is
the name of the field or method; the sec-
ond two point to a UTF8, which is its
descriptor.

26 | ENGEL.ch06 Page 138 Friday, May 19, 2000 2:30 PM

Tyrrell Albaugh

Tyrrell Albaugh

CHAPTER 6 VERIFICATION PROCESS

140

6.4 Are All the Instructions Valid?

Now that you know that the overall class structure is valid, you can look at the
method bodies to see if the instructions within the method are correctly formed.
Following are some of the questions to ask.

�

Does each instruction begin with a recognized opcode?

�

If the instruction takes a constant pool reference as an argument, does it
point to an actual constant pool entry with the correct type?

Constant pool count (256)

UTF8 isEven

UTF8 (I)Z

UTF8 field1

UTF8 LFoo;

UTF8 Baz

Class name index = 5

UTF8 Bar

Class name index = 7

UTF8 Foo

Class name index = 9

This class (10 = Foo)

Superclass (8 = Bar)

Interface count (1)

Interface (6 = Baz)

Fields count

Field flags

Field name (3 = field1)

Field desc (4 = LFoo;)

Field attributes count (0)

Method count

Method flags

Method name (1 = isEven)

Method description (2 = (I)B)

Methods attributes count

Attributes

1

2

3

4

5

6

7

8

9

10

1 0

1 n0 6 i s E v

1 0 4 (I) Z

e

1 10 6 f i e l d

1 0 5 L F o o ;

1 0 3

7 0 5

B a z

1 0 3

7 0 7

B a r

1 0 3

7 0

0 A

0 8

0 1

0 6

0 1

0 0

0 3

0 4

0 0

0 1

0 0

0 1

0 2

0 1

0

9

F o o

FIGURE 6.2: Are all constant references correct?

26 | ENGEL.ch06 Page 140 Friday, May 19, 2000 2:32 PM

Tyrrell Albaugh

CHAPTER 6 VERIFICATION PROCESS

150

The

if_icmpge

 instruction pops two elements off the stack. After executing
it, the stack is empty. Control will go to either

body

 (if the test fails) or

end

 (if it
succeeds). You have to annotate both instructions with the new stack picture:

Stack picture

[I I I aload_0

iload_2

iaload

iload_1

iadd

istore_1

iinc 2 1

0 1

Local variable picture

2

goto loop

return[I I I

 : instruction to check

body:

end:

�: already checked instructions

26 | ENGEL.ch06 Page 150 Friday, May 19, 2000 2:32 PM

Tyrrell Albaugh

6.5 WILL EACH INSTRUCTION ALWAYS FIND A CORRECTLY FORMED STACK?

151

You must check both paths, but it doesn’t matter which one you choose to do
first. In this example, we’ll check the path through

body

 first. We proceed as
before until we hit the

goto

 instruction. The picture now looks like this:

Stack picture

[I I I aload_0

iload_2

iaload

iload_1

iadd

istore_1

iinc 2 1

0 1

Local variable picture

 : instruction to check

2

[I I I

[I

[I

I

[I

I I

[I

I

I I

[I

I

II I

[I

I

I I

[I I I

[I I I goto loop

return[I I I

�

�

�

�

�

�

�

end:

body:

�: already checked instructions

26 | ENGEL.ch06 Page 151 Friday, May 19, 2000 2:33 PM

Tyrrell Albaugh

CHAPTER 6 VERIFICATION PROCESS

154

The verification algorithm will reject this method, because it can’t be sure of a
constant stack height. If it permitted this method to execute, the stack would grow
by 1 each time. Eventually, the program might overflow the stack. Because you
don’t want that to happen, the verification algorithm rejects this code.

6.5.4 Example 4: Dealing with Subclasses

One more complication: it isn’t necessary for two stack pictures to be identical
when two different flows of control come to the same place. Here’s a (somewhat
contrived) example. The example depends on three classes:

abstract class Person {

abstract void printName();

}

class Programmer extends Person {

void printName() { /* Implementation goes here */ }

}

class Author extends Person {

void printName() { /* Implementation goes here */ }

}

The code we wish to verify is

.method public static print(ZLProgrammer;LAuthor;)V

iload_0 ; Is the boolean false?

ifeq false ; If not,

true: aload_1 ; then push the programmer

goto print

false: aload_2 ; Otherwise, push the author

print: invokevirtual Person/printName ()V

; Call printName on the Person

; This works whether it’s an

; Author or a Programmer,

; since each is a Person

done: return

.end method

This method takes three arguments: a

boolean

 control, a

Programmer

, and an

Author

. If the control is

true

 then it prints the name of the

Programmer

. Other-
wise, it prints the name of the

Author

. The program arrives at

print

 with either

26 | ENGEL.ch06 Page 154 Friday, May 19, 2000 2:33 PM

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

6.7 JAVA LANGUAGE AND VERIFICATION ALGORITHM

161

This way of checking external references gives JVM programmers tremen-
dous flexibility to change classes without having to recompile all the classes that
use them. You only have to check for the fields and methods that are actually used.
You can add or delete fields and methods, without altering the correctness of
classes that don’t use them.

In addition, because they’re checked by name and type, you can move meth-
ods around in the source file without affecting other classes that use this class.
This helps solve the “fragile base class” problem familiar to C++ programmers,
who know that even a seemingly negligible change such as changing the order of
methods can require recompilation of every file in the project. It is a cause of
many subtle and mysterious bugs in C++ projects.

Many JVM implementations, including Sun’s Java Development Kit, don’t
actually test external references until they are needed. This can save a lot of time.
You can start using the class immediately, without having to wait for all the
related classes (and all the classes related to those classes, and so on) to load. It’s
quite possible that many of the references will never need to be checked because
the field or method is never used.

6.7 Java Language and Verification Algorithm

The most common programming language for writing Java virtual machine pro-
grams is Java. One thing the language guarantees is that anything you can say in
Java can be translated into virtual machine code that will pass the verification
algorithm.

The verification rules state that the arithmetic instructions (

iadd, ddiv

, etc.)
always take two values of the same type (two

int

s, two

double

s, etc.). Say you
have the following Java program fragment:

int i = 70; // Call this variable 1

float j = 111.1; // Call this variable 2

double k = i+j; // Call this variable 3 (and 4)

A naïve (and invalid) translation into bytecodes would be

bipush 70 ; Initialize i (variable 1) to 70

istore_1

ldc 111.1 ; Initialize j (variable 2) to 111.1

fstore_2

iload_1 ; Push the integer 70

fload_2 ; Push the float 111.1

26 | ENGEL.ch06 Page 161 Friday, May 19, 2000 2:34 PM

Tyrrell Albaugh

7.1 DEBUGGING DIRECTIVES IN OOLONG

171

.method static fahrenheitToCelsius (F)V

.limit stack 2

.var 0 is fahrenheit from begin to end_of_computation

.var 0 is celsius from end_of_computation to end

begin:

fload_0 ; Push fahrenheit in variable 0

ldc 32.0 ; Subtract 32

fsub

ldc 5.0 ; Multiply by 5

fmul

ldc 9.0 ; Divide by 9

fdiv

end_of_computation:

fstore_0 ; Now variable 0 is celsius

getstatic java/lang/System/out Ljava/io/PrintStream;

fload_0 ; Print variable 0

invokevirtual java/io/PrintStream/println (F)V

return

end:

.end method

It’s also possible in Java for two different variables to have the same name in
different parts of a method:

{

int i;

/* i is variable 1 */

}

{

int j;

int i;

/* Here, j is variable 1 and i is variable 2 */

}

To let the debugger know which variable is named what, use this Oolong code:

.var 1 is i I from scope1begin to scope1end

.var 1 is j I from scope2begin to scope2end

.var 2 is i I from scope2begin to scope2end

scope1begin:

; Here variable 1 is i, and variable 2 is unnamed

26 | ENGEL.ch07 Page 171 Friday, May 19, 2000 2:34 PM

Tyrrell Albaugh

Tyrrell Albaugh

CHAPTER 8 CLASS LOADERS

182

Under the Java 1.1 and later platforms, the call to

defineClass

 is replaced with

c = defineClass(name, bytes, 0, bytes.length);

The first example is acceptable under Java 1.1 but deprecated (that is, it’s considered
bad style, and one day it may no longer be acceptable). If the

name

 doesn’t match
the name of the class found in the bytes, then a

ClassFormatError

 is thrown.
If the class is found neither in the cache nor wherever

findClass

 looks for it,
the class loader calls

findSystemClass

 to see whether the system can locate a
definition for the class. If

findSystemClass

 doesn’t find it, it throws a

ClassNot-

FoundException

, since that was the last chance to find the class.

8.3.1 Caching Classes

It’s important that a class loader return the same

Class

 object each time it’s given
a particular name. If the same class were loaded more than once, it would be con-
fusing to users who might find that two classes with identical names aren’t identi-
cal. Class static constructors might be invoked multiple times, causing problems
for classes that were designed to expect them to be called only once.

Under Java 1.0, it was the responsibility of the class loader to cache classes
itself. This is usually done with a

Hashtable

, as shown in the template. However,
this still leaves the possibility of confusion, since two different class loaders might
each load a class into the system with the same name. Java 1.1 resolves this prob-
lem by handling the caching itself. It makes this cache available to the class loader
developer through a method called

findLoadedClass

:

Class findLoadedClass(String name);

A call to

findLoadedClass

 replaces the cache lookup. When

defineClass

 is
called, it maps the name of the class to the

Class

 that is returned. After that,

findLoadedClass

 always returns that

Class

 whenever it’s given the same name,
no matter which class loader invokes it.

When implementing your class loader, you will have to decide whether to use
the Java 1.0 interface or the 1.1 interface. The 1.0 interface is supported on virtual
machines supporting Java 1.1 but not vice versa. However, using the 1.0 interface
will have different results on a JVM 1.1 if the class loader tries to define a class
more than once. On a JVM 1.0, it would actually load the classes multiple times,
and the system would have two different classes with the same name. These
classes wouldn’t share

static

 fields or use

private

 fields or methods on the
other. On 1.1 and later JVMs, however,

defineClass

 throws an exception when
it’s asked to define the class a second time anywhere in the virtual machine, even
if the bytes are identical.

26 | ENGEL.ch08 Page 182 Friday, May 19, 2000 2:35 PM

Tyrrell Albaugh

Tyrrell Albaugh

10.8 ARITHMETIC EXPRESSIONS

229

that both subexpressions have the same type. If the expressions have different
types, then one must be coerced to have the same type as the other.

10.8.1 Numeric Coercions

Coercion is the process of converting a value of one type into a value of a different
type. Although the two values are completely different to the JVM, they mean
something similar to the user. The number

1.0

 (the floating-point number 1) is
completely different from the number

1

 (the integer 1); arithmetic instructions
that apply to one of them do not apply to the other. However, it is clear that

1.0

and

1

 are corresponding values in the different domains of numbers.
For example, consider this Java expression:

1.0 + 1

According to

The Java Language Specification,

 the result should be the floating-
point number

2.0

. The naïve transformation into bytecodes is this:

fconst_1 ; Push 1.0

iconst_1 ; Push 1

fadd ; ERROR! Can’t add a float to an int

In order to make these two values have the same type, it is necessary to convert
one of them to have the same type as the other. The primary goal is to preserve the
magnitude of the number, and the secondary goal is to preserve the precision.

TABLE 10.6: Selecting an arithmetic operator

Operat
or

Type

int long float double

+ iadd ladd fadd dadd

- isub lsub fsub dsub

/ idiv ldiv fdiv ddiv

* imul lmul fmul dmul

% irem lrem frem drem

unary - ineg lneg fneg dneg

& iand land - -
| ior lor - -

^ ixor lxor - -

26 | ENGEL.ch10 Page 229 Friday, May 19, 2000 2:36 PM

Tyrrell Albaugh

CHAPTER 10 COMPILING JAVA

234

truncation. This means that the

char

 value is always positive, but the

short

 and

byte

 equivalents may be negative. Table 10.11 lists some examples of what hap-
pens when you cast an

int

 to a smaller type.

10.8.3

~

 Operator

The

 ~

 operator is not represented in Table 10.6. The

~

 operator takes an

int

 or a

long

 and inverts each bit. There is no instruction for this operator. Java compilers
take note of the fact that, for a single bit

x

, computing

~x

 is equivalent to comput-
ing

x

 + –

1

, where

+

is the exclusive-or operator. To invert all the bits in the num-
ber at once, the Java compiler uses the

lxor

 or

ixor

 instruction with the value
consisting of 64 or 32 1’s. In the two’s complement notation used in the Java vir-
tual machine, an integer consisting of all 1’s is equal to

–1

. For example,

~x

TABLE 10.10: Casting numeric types

Expression Result

(int) f Demote f to an int.
(double) f Promote f to a double.
(long) f Demote f to a long.
(float) l Promote l to a float.
(int) i No change
(double) (i+f) First i is converted to a float, then the final result is converted to a

double.

TABLE 10.11: Converting between int
types

Expression
Resu
lt

(short) 65555 -1

(char) 65535 65535

(byte) 65535 -1

(short) 160 160

(char) 160 160

(byte) 160 -2

26 | ENGEL.ch10 Page 234 Friday, May 19, 2000 2:36 PM

Tyrrell Albaugh

Tyrrell Albaugh

CHAPTER 11 COMPILING OTHER LANGUAGES

276

public Object nextElement()

{

if(count == 0)

throw new NoSuchElementException();

else

{

count--;

return elements[count];

}

}

}

}

The inner class

Enumerator

 within

Stack

 uses the fields

elements

 and

top

 from

Stack

. These refer to the fields within the object that created the

Enumerator

.
To support these, the translation includes a reference to the enclosing object,

called

this$0

. It is initialized in the constructor to the object responsible for the
creation of the

Enumerator

. All references to

top

 and

elements

 come from this
reference.

The compilation of

Enumerator

 produces these definitions:

.class Stack$Enumerator

.implements java/util/Enumeration

.field this$0 LStack; ; The enclosing object

.field count I ; The current count

.method <init>(LStack;)V

aload_0 ; Call super constructor

invokespecial java/lang/Object/<init>()V

aload_0 ; Store the enclosing object

aload_1 ; in this$0

putfield data/structure/Stack$Enumerator/this$0 LStack;

aload_0 ; This is the body of the

aload_1 ; constructor:

getfield Stack/top I ; count = top;

putfield count I

return

.end method

26 | ENGEL.ch11 Page 276 Friday, May 19, 2000 2:37 PM

Tyrrell Albaugh

CHAPTER 11 COMPILING OTHER LANGUAGES

278

next character, using the new state, until you reach the end of the input. If you end
up in a terminal state, then the regular expression matches the input string. If the
final state isn’t a terminal state, or if you find yourself in a state where there is no

String of digits. []
means “one of a range
of characters,”* means
“zero or more.”

Period followed by digits
(optional). Parentheses
are used to group things
together, and the ? means
that the whole group is
optional.

Exponential part, such
as e+10, E4, e-22, etc.

Precision indicator
(optional)

[0—9]* .([0—9]*)? ([eE][-+]?[0—9]+? [fFdD]?

FIGURE 11.1: Reading a regular expression

Start 1
0—9 f, F, d or D

f, F, d or D

f, F,
d or D

0—9

0—9

0—9

0—9

0—9

e or E

+ or —

e or E

2

5

6

3

4

FIGURE 11.2: Finite state machine recognizing floating-point numbers

26 | ENGEL.ch11 Page 278 Friday, May 19, 2000 2:38 PM

Tyrrell Albaugh

CHAPTER 12 IMPLEMENTING SCHEME

310

/** Return the value of sym */

public Object lookup(String sym) throws UnboundSymbolException

{

Object o = cache.get(sym);

if(o != null)

return o;

if(ancestor == null)

throw new UnboundSymbolException(sym);

return ancestor.lookup(sym);

}

/** Bind the symbol to the value */

public void bind(String symbol, Object value)

{

cache.put(symbol, value);

}

}

The hash table

cache

 maps symbols (

String

s) to values (

Object

s). Each environ-
ment contains a pointer to the previous environment, called the

ancestor

. The

lookup

 method looks up the symbol in the cache. If it is not found, it attempts to
look it up in the ancestor. If it’s not found in any environment, then an exception is
thrown, indicating that the symbol is not bound.

The evaluator compiles each form into bytecodes that have the same seman-
tics as the form. Each form evaluates to a value. The bytecodes leave the value of
that form on the stack.

Numbers compile into instances of the class

Integer

. To compile the form

5

the compiler generates this code:

new java/lang/Integer ; Create an integer

dup

iconst_5 ; Push the value

invokespecial java/lang/Integer/<init>(I)V ; Construct the

; object

To compile a symbol, the program looks up the symbol in the current bind-
ing environment using the

lookup

 method. The compiler keeps the current binding
environment in local variable 1. To compile the form

x

26 | ENGEL.ch12 Page 310 Friday, May 19, 2000 2:39 PM

Tyrrell Albaugh

14.2 BYTECODE OPTIMIZATION TECHNIQUES

363

Sometimes you can compute the results of an operation even before it is exe-
cuted and replace the code with a simple push of the results. Consider this Java code:

int seconds_in_a_day = 60*60*24;

A naïve compiler might compile this to

bipush 60

bipush 60

imul

bipush 24

imul

A better compiler would generate

ldc 86400

This single instruction is likely to execute significantly faster than the five instruc-
tions. Although the difference may seem trivial, when it is executed a million
times the differences add up.

14.2.4 Loop Unrolling

In some loops, the time it takes to execute the body of the loop may not be all that
much larger than the loop tests. Consider, for example, this code to count the
number of 1 bits in the

int m

:

for(int i = 0; i < 32; i++)

n += m >> i & 1;

A naïve Java compiler might generate this code:

loop: iload_1 ; Compare i to 32

bipush 32

if_icmpge break ; Break when i >= 32

iload_3 ; Push n

iload_2 ; Push m

iload_1 ; Push i

ishr ; Compute m >> i

iconst_1

iand ; Compute m >> i & 1

iadd ; Add that value to n

istore_3 ; Store n

iinc 1 1 ; Increment i

goto loop ; Loop again

26 | ENGEL.ch14 Page 363 Friday, May 19, 2000 2:39 PM

Tyrrell Albaugh

CHAPTER 14 PERFORMANCE

364

This code will increment

i

 32 times and test if

i

 is less than 32 the same number
of times. It’s obvious that the test will fail the first 31 times and succeed the last
time. You can eliminate the tests by “unrolling” the loop, like this:

iload_2 ; Push m
iconst_0 ; Push 0
ishr ; Compute m >> 0
iconst_1 ; Push 1
iand ; Compute m >> 0 & 1 (the first bit)
iload_3 ; Push n
iadd ; Add the result to n
istore_3 ; store n

iload_2 ; Push m
iconst_1 ; Push 1
ishr ; Compute m >> 1
iconst_1 ; Push 1
iand ; Compute m >> 1 & 1 (the second bit)
iload_3 ; Add n
iadd
istore_3 ; Store n

;; Repeat this pattern 29 more times

iload_2 ; Push m
bipush 31 ; Push 31
ishr ; Compute m >> 31 (the leftmost bit)
iconst_1 ; Push 1
iand ; Compute m >> 31 & 1
iload_3 ; Push n
iadd ; Add the last bit to n
istore_3 ; Store n

Although this greatly expands the size of the resulting code, the total number of
instructions executed is reduced. It also allowed us to completely eliminate local
variable 1, which had been used as the loop counter. This results in a speedup of
200% to 400%, depending on the virtual machine implementation used.

14.2.5 Peephole Optimization

Compilers often generate code that has redundant instructions. A peephole opti-
mizer looks at the resulting bytecodes to eliminate some of the redundant instruc-
tions. This involves looking at the bytecodes a few instructions at a time, rather
than doing wholesale reorganization of the code. The name “peephole optimiza-
tion” comes from the tiny “window” used to view the code.

26 | ENGEL.ch14 Page 364 Friday, May 19, 2000 2:40 PM

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

14.2 BYTECODE OPTIMIZATION TECHNIQUES

367

which can be further reduced to

ldc 86400

Table 14.1 lists some other rules for a peephole optimizer. The variables

x

and

y

 stand for any field or local variable. For the operations

aload

 and

astore

,
you may perform the same operations on the corresponding

float

 and

int

instructions.

TABLE 14.1: Poophole optimization rules

Replace With Reason

dup
swap

dup The result of a dup is two of the same element; swap-
ping produces an identical result.

swap
swap

A double swap accomplishes nothing.

iinc 1 1
iinc 1 1

iinc 1 2 Since it takes just as long to increment by 2 as to incre-
ment by 1 (on most systems), you might as well do the
increment just once.

nop A nop instruction has no effect, so you might as well
eliminate it.

getfield x
getfield x

getfield x
dup

Two getfield instructions one immediately after the
other leave no opportunity for the field value to change,
so you can replace the second one with a dup. Excep-
tion: If the field is marked volatile, then its value
may be changed by some other thread, and this optimi-
zation would be in error.

aload x
aload x

aload x
dup

Some systems have special fast operations for duplicat-
ing the top element of the stack.

astore x
aload x

dup
astore x

Some systems have special fast operations for duplicat-
ing the top element of the stack.

aload x
astore x

These instructions cancel each other out.

astore x
astore x

astore x
pop

Storing into the same variable twice is unnecessary;
only the second store needs to be performed.

aload x
pop

These instructions cancel each other out.

aload x
aload y
areturn

aload y
areturn

Since the value of x is left on the top of the stack at the
time of the return, there is no reason to push it. This
optimization applies to any instruction except a method
invocation, branch instruction, or storing into a field.

26 | ENGEL.ch14 Page 367 Friday, May 19, 2000 2:40 PM

Tyrrell Albaugh

CHAPTER 15 SECURITY AND THE VIRTUAL MACHINE

382

public static setSecurityManager(SecurityManager sm)

{

if(security != null)

throw new SecurityException

 ("SecurityManager already set");

security = sm;

}

}

The integrity of the

security

 field is critical, since an applet that could set that
field could control the security policy of the system. This makes

security

 a likely
target for attack.

15.4.3 Bypassing Java Security

The most straightforward attack would be to try to set the

security

 field. The
attacker’s applet might be written in Java:

public class NastyApplet extends Applet

{

void attack()

{

System.security = null;

// The security manager is null, so everything is

// permitted

// Put code to wreak havoc here

}

}

When this class is compiled, the Java compiler will notice that the

security

 field
is private to the

System

 class and refuse to compile the file. This would not stop a
determined attacker, who would proceed to rewrite the applet in Oolong:

.class public NastyApplet

.super java/applet/Applet

.method attack()V

aconst_null ; Install null as the

; security manager

putstatic java/lang/System/security Ljava/lang/SecurityManager;

;; Wreak havoc

.end method

26 | ENGEL.ch15 Page 382 Friday, May 19, 2000 2:41 PM

Tyrrell Albaugh

APPENDIX C ANSWERS TO SELECTED EXERCISES

458

Exercise 3.4

This is more than just a matter of substituting D’s for I’s; you also have to change
the variable numbers because each value takes two slots. The answer:

.method public static Dcalc(DDDD)D

.var 0 is a D

.var 2 is b D

.var 4 is c D

.var 6 is x D

dload_0 ; Push a

dload 6 ; Push x

dload 6 ; Push x again

dmul ; Calculate x^2

dmul ; Calculate ax^2

dload_2 ; Push b

dload 6 ; Push x

dmul ; Push bx

dload 4 ; Push c

dadd ; Compute bx+c

dadd ; Compute ax^2+bx+c

dreturn

.end method

The maximum stack height written this way is 6.

Exercise 3.5

.method public static icalc2(IIII)I

iload_0 ; Push a

iload_3 ; Push x

imul ; Calculate ax

iload_1 ; Push b

iadd ; Calculate ax+b

iload_3 ; Push x

imul ; Compute ax^2+bx

26 | ENGEL.appxB-C Page 458 Friday, May 19, 2000 2:41 PM

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

Tyrrell Albaugh

